RML prions act through Mahogunin and Attractin-independent pathways
نویسندگان
چکیده
While the conversion of the normal form of prion protein to a conformationally distinct pathogenic form is recognized to be the primary cause of prion disease, it is not clear how this leads to spongiform change, neuronal dysfunction and death. Mahogunin ring finger-1 (Mgrn1) and Attractin (Atrn) null mutant mice accumulate vacuoles throughout the brain that appear very similar to those associated with prion disease, but they do not accumulate the protease-resistant scrapie form of the prion protein or become sick. A study demonstrating an interaction between cytosolically-exposed prion protein and MGRN1 suggested that disruption of MGRN1 function may contribute to prion disease pathogenesis, but we recently showed that neither loss of MGRN1 nor MGRN1 overexpression influences the onset or progression of prion disease following intracerebral inoculation with Rocky Mountain Laboratory prions. Here, we show that loss of ATRN also has no effect on prion disease onset or progression and discuss possible mechanisms that could cause vacuolation of the central nervous system in Mgrn1 and Atrn null mutant mice and whether the same pathways might contribute to this intriguing phenotype in prion disease.
منابع مشابه
Agouti protein, mahogunin, and attractin in pheomelanogenesis and melanoblast-like alteration of melanocytes: a cAMP-independent pathway
Melanocortin-1 receptor (MC1R) and its ligands, alpha-melanocyte stimulating hormone (alphaMSH) and agouti signaling protein (ASIP), regulate switching between eumelanin and pheomelanin synthesis in melanocytes. Here we investigated biological effects and signaling pathways of ASIP. Melan-a non agouti (a/a) mouse melanocytes produce mainly eumelanin, but ASIP combined with phenylthiourea and ex...
متن کاملOligodendroglial deletion of ESCRT-I component TSG101 causes spongiform encephalopathy.
BACKGROUND INFORMATION Vacuolation of the central nervous system (CNS) is observed in patients with transmissible spongiform encephalopathy, HIV-related encephalopathy and some inherited diseases, but the underlying cellular mechanisms remain poorly understood. Mice lacking the mahogunin ring finger-1 (MGRN1) E3 ubiquitin ligase develop progressive, widespread spongiform degeneration of the CNS...
متن کاملThe extended cell panel assay characterizes the relationship of prion strains RML, 79A, and 139A and reveals conversion of 139A to 79A-like prions in cell culture.
Three commonly used isolates of murine prions, 79A, 139A, and RML, were derived from the so-called Chandler isolate, which was obtained by propagating prions from scrapie-infected goat brain in mice. RML is widely believed to be identical with 139A; however, using the extended cell panel assay (ECPA), we here show that 139A and RML isolates are distinct, while 79A and RML could not be distingui...
متن کاملPrion Topology and Toxicity
Inactivation of mahogunin, an E3 ubiquitin ligase, causes a spongiform encephalopathy resembling prion disease. Chakrabarti and Hegde (2009) now report that prion proteins with aberrant topologies inactivate mahogunin, providing a plausible explanation for certain aspects of prion pathology.
متن کاملPhysical, chemical and kinetic factors affecting prion infectivity
The mouse-adapted scrapie prion strain RML is one of the most widely used in prion research. The introduction of a cell culture-based assay of RML prions, the scrapie cell assay (SCA) allows more rapid and precise prion titration. A semi-automated version of this assay (ASCA) was applied to explore a range of conditions that might influence the infectivity and properties of RML prions. These in...
متن کامل